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Abstract

Nature is ever-changing and always evolving dynamically, displaying chemical transforma-
tions in chemistry and material changes in physics. Many of these changes can be prescribed
mathematically by sets of differential equations describing the aforementioned dynamical
changes. This work focuses on chemical reaction network theory, where ordinary differential
equations are used to model the temporal change of chemical species concentration. The
functional form of these ordinary differential equations systems is derived from an empirical
model of the chemical reaction network. However, the empirical model can be incomplete,
for example, when there are hidden interactions between the chemical species, not easily
or explicitly quantifiable. As a consequence, there can be large discrepancies between the
experimental results and the predictions made by the solution of the ordinary differential
equations. Elucidating such methodologies, shedding light on hidden insights, and AI-driven
insightful understanding is the goal of this research.

In this thesis, I aim to account for such discrepancies by combining the theoretical vector
field with a neural network in the form of a neural ordinary differential equation. With this
approach, the neural network acts as a correction term, capturing the dynamics that are not
included in the theoretical model. I test the predictive performance of the neural ordinary
differential equations on synthetic as well as experimental datasets. When provided with a
complete vector field, the model can fit all datasets, even in noisy settings, including open
systems. Furthermore, the method can find missing reactions within all aperiodic chemical
reaction networks considered. The neural network output, which illustrates the magnitude
and temporal signature of the differences between the theoretical model and the experimental
data, can be used to reason about the structure of the chemical reaction network.
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Chapter 1

Introduction

1.1 Motivation

This document has been written with two goals in mind. First, I highlight the flexibility
of neural ordinary differential equations (ODEs) in chemical reaction network (CRN) mod-
elling on real-world datasets. In particular, I minimize the differences between the model
predictions and the experimental measurements by combining a vector field based on chem-
ical theory with a neural network. Second, I demonstrate the insights provided by the
model, where the separate predictions of the neural network can be used to reason about
the structure of the CRN.

1.1.1 Problem definition

ODEs are widely used to model dynamical systems. Within the chemical domain, ODEs
are used to describe the real-world behaviour of CRNs. To do so, the system of ODEs is
derived by combining empirical knowledge regarding the structure of the CRN with the law
of mass-action [1, 2]. The resulting system of differential equations is used to predict the
concentrations of the chemical species over time. The parameters of the ODEs are tuned to
maximize the similarity between the model predictions and experimental measurements [3,
4].

Despite the tuning process, it is not guaranteed that the system of ODEs can perfectly
generate their predictions of the experimental data because of confounding effects, such as
measurement noise, incomplete modelling, missing data and issues with the experimental
design [5]. Furthermore, as the ODEs directly follow from the chemical-informed design of a
CRN, the differential equations cannot describe any dynamical changes not included in the
theoretical model. This limits the model’s performance when the CRN is misspecified, for
example, if the model does not include all interactions between the species involved [6]. In
addition, the modelling performance can deteriorate if the assumptions for the application
of the law of mass action are violated, which could be the case if the real-world chemical
system is open or not well-mixed [7].
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1.1.2 Contributions

In this work, I create and implement a method to correct for the discrepancies described
above using neural ODEs: a combination of dynamical systems modelling and deep learning
[8]. Neural ODEs are inspired by the advances in deep residual learning and normalizing
flows, which build complex transformations by applying a sequence of smaller transforma-
tions [9, 10]. These smaller transformations are represented by a neural network, a mathe-
matical model that can be trained to approximate any function [11, 12, p. 233]. In the limit,
the composition of small neural transformations behaves like a differential equation. Yet, in
contrast to a traditional differential equation with a predefined vector field, the neural ODE
takes form during the training process to minimize the differences between the modelled and
experimental data [13].

A note on the scale Because the neural ODEs are used to learn a smaller transformation
that is applied in a sequence, the models can be very small. The models that are used in this
work have a number of trainable parameters in the order of tens or hundreds. This is very
different from the large-scale trend that is fuelled by the latest advances in deep learning,
where the number of parameters goes towards the order of billions [14].

Comparison with related work The possibility of solving chemical kinetics using neural
ODEs has been explored before. Yet, the approaches introduced in previous work require
that the number of reactions is known a priori [15]. Alternatively, the method focuses on the
thermodynamical state of the reactions instead of the concentrations of the species [16]. In
contrast, this work aims to identify the differences between the modelled and experimental
concentrations without making any assumptions about the reactions within the CRN. To
this end, we take inspiration from Rackauckas et al. and augment the existing theoretical
vector field with a neural network component [17]. This way, the neural network acts as a
correction term: it captures the trends within the experimental data that are not explained
by the theoretical model [13]. The proposed method, which is summarized in Figure 1.1,
does not require that the concentrations of all species involved in the CRN are measured.

Theoretical vector field hκ

hκ(t, [A]);dt
[A]d = dt

[B]d = ...;

Neural network  f 

Neural ODE
dt
[A]d = hκ

(t, [A])+f (t, [A])
θ

θ

A B C
R1 R2

Chemical reaction network

Differential equation
solver

Experimental data

C
on

ce
nt

ra
tio

n

Time

dt = ...;
[C]d

Prediction

C
on

ce
nt

ra
tio

n

Time

Ground truth
Model prediction

Figure 1.1: A summary of the model that is used to predict the concentrations of the
chemical species over time. The model combines the theoretical vector field hκ and a neural
network fθ in a neural ODE to minimize the differences between the model predictions and the
experimental data.
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The dynamics of the species that are missing from the experimental data are predicted using
just the theoretical vector field. Next to minimizing the difference between the theoretical
predictions and the experimental data, the proposed model provides an insight into the
connectivity of the CRN. The contribution of the network can be calculated separately for
each chemical species that is measured. This contribution illustrates the magnitude and
temporal signature of the differences between the theoretical model and the experimental
data.

Challenges While neural ODEs form a promising approach for solving chemical dynamics,
it is challenging to fit the models on stiff systems of differential equations [18]. Regions
of strongly increasing or decreasing dynamics, which often occur within chemical kinetics,
cause numerical instabilities for explicit ODE solvers [19]. While it is common to counter
the stiffness of the dynamics by using implicit solvers such as Kværnø’s 5/4 method [20], I
also change the temporal scale of the data to reduce the total number of steps that are taken
during the solving process. Furthermore, the models were found to frequently get stuck
within local minima during training. To counter this phenomenon, the models are trained
with a cyclic learning rate scheduler.

Experiments To test the methods, I assess the modelling performance by applying the
method to various CRNs. I first consider three synthetic datasets of small reaction networks.
The controlled Secondly, I consider two experimental datasets that have been collected in
Harmsel et al. This work proposes a chemical oscillator that is designed using small organic
molecules. The chemical reaction network consists of 5 reactions and involves 7 species. I
use the data from the single-pulse experiment as well as the measured series of sustained
oscillations. The model performance is tested by providing it with the theoretical vector
field described in [21]. Furthermore, by adding a small influx to the data or deliberately
leaving out reactions from the CRN, I also test the model’s performance on open systems
and incomplete vector fields.

Relevance The results found with the experiments described above offer two insights.
Firstly, the neural network contributions can be used to verify the correctness of the theoret-
ical model under noisy measurements. Secondly, the contributions can be used to account for
and uncover any dynamics that are not included in the theoretical model. In future work,
these contributions may be translated into concrete adjustments to the theoretical vector
field by using symbolic regression [22]. In addition, the neural ODE can be extended to cal-
ibrate the system of ODEs, rather than improving an existing, calibrated set of differential
equations.

1.2 Thesis outline

While writing this thesis, I assume that the reader is familiar with the basics of (recurrent)
neural networks. Familiarity with solving differential equations is helpful, but not required.
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This topic will be introduced in Section 2.1. Furthermore, Section 2.2 provides a brief in-
troduction to chemical network theory to facilitate readers who do not have a chemical
background. Chapter 3 aims to highlight the similarities and differences between the pro-
posed work and existing methods. The chapters that follow focus on just the proposed work
by describing the Methods, Results, Discussion and Conclusion.

Code The code used to perform the experiments is available on GitHub.

https://github.com/KachmanLab/ChemicalReactionNetworks

The repository also contains the scripts that have been used to generate the figures that are
included in this thesis.

https://github.com/KachmanLab/ChemicalReactionNetworks
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Chapter 2

Background

2.1 Differential equations

2.1.1 Definition

Differential equations (DEs) describe the derivative of an unknown function ϕ with respect
to one or more variables [23, p. 990]. DEs are commonly used in natural sciences to express
a relation between quantities. The latter claim also holds in this work, where the relation of
interest is described by the change in concentration of a chemical species over time. As the
chemical concentrations are merely derived with respect to the time t, the DEs of interest
can be referred to as ODEs: the subset of DEs that are derived with respect to a single
variable [23, p. 991].

A first order ODE, which has the generic form shown in Equation 2.1 represents a slope
field.

dy

dx
= f(x, y) (2.1)

That is, for each point (x, y) within the domain of f , the slope of the function y is described
with f(x, y) [23, p. 999]. Yet, just knowing Equation 2.1 is not sufficient to learn something
about the shape of y. In particular, the solution to the differential equation depends on its
initial value y0 = y(x0). As a consequence, to model y, the so-called initial value problem
(IVP) should be solved.

2.1.2 The initial value problem

The initial value problem consists of two components, a differential equation dy/dx and a pre-
scribed value of the solution to the DE at a particular point y0 (the initial point) [23, p. 152].
While the solution to the IVP equals y =

∫
f(x, y) dx, systems of differential equations are

often solved using numerical methods due to the unavailability of the antiderivative of f [23,
p. 152]. As a consequence, the solution to the IVP is often approximated by discretizing the
derivative. The simplest method to do so is the Euler discretization, presented in Equation
2.2 [24]. In the equation, n indicates the current state, n+ 1 the next state and ∆x the size
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of the state change with respect to x.

dy

dx
(xn) ≈

y(xn+1)− y(xn)

∆x
(2.2)

Using this discretization, the vector field from Equation 2.1 can be rewritten to the defini-
tion provided in Equation 2.3. Using this equation, solving a differential equation can be
interpreted as the repeated application of the product between the stepsize ∆x and the slope
f at xn. This definition bears similarities with the learning process of residual deep learning
architectures (Equation 2.4), which will be discussed in more detail in Section 2.1.4.

y(xn+1) = y(xn) + ∆x · f(xn, y(xn)) (2.3)

2.1.3 Numerical methods for solving differential equations

According to Equation 2.3, the solution to the DE is formed by repeatedly incrementing
an intermediate solution by the product of the slope at xn and the stepsize ∆x. Therefore,
the magnitude of the step size is determinative of the final solution. A step size that is
too large results in a suboptimal solution, with an error that accumulates at each step
within the solver process. At the same time, a stepsize that is too small increases the
computational complexity of the process. The number of steps needed to calculate the
solution N = |x− x0|/∆x. While a decrease of ∆x is expected to lower the error of Euler’s
method proportionally to N(∆x)2 = |x − x0| · ∆x [23, p. 1003], it leads to an increase in
N . As a result, various numerical methods for solving DEs have been designed that aim to
minimize the error without decreasing the step size. The family of Runge-Kutta methods,
which are further improvements on the Euler method, form an example [25, 26]. Within the
Runge-Kutta methods, one can make a distinction between implicit and explicit methods.
Explicit methods, like the Euler discretization introduced before, calculate the state of the
solution at time n + 1 given the DE applied to the current state at time n. In contrast,
implicit methods find the solution y by solving a DE that involves both the current and
the next state. Even though implicit numerical methods are harder to solve, they are more
stable than explicit methods [13]. This is an advantage when dealing with the stiff systems
that are described in the next section.

Stiffness and numerical stability Solving a system of differential equations in a stepwise
fashion as described above introduces a limitation: the quality the solution of the DE depends
on the interplay between the stepsize and the slope (see Equation 2.3). Whereas the previous
section highlighted the influence of the stepsize, I now focus on the influence of slope. By
definition, the magnitude of the slope is dependent on the location xn. As a consequence,
a system of differential equations may contain regions of strongly increasing or decreasing
dynamics. The large differences between these regions introduce numerical instabilities into
the solving process that can be countered by using implicit solvers with adaptive stepsizes
[13]. Stiffness is a very important notion for this thesis as it is an often-occurring phenomenon
within chemical kinetics [19]. As a consequence, the choice of solver and temporal scaling of
the data plays a large role in the Methods.
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2.1.4 Neural ordinary differential equations

Thus far, this section has focused on a system of differential equations with a predefined
vector field f(x, y). Yet, when considering a neural ODE, the vector field f(x, y) is repre-
sented by a neural network fθ with parameters θ [27, p. 16]. These neural ODEs, which are
introduced by Chen et al. in [8], can be seen as the continuous limits of residual networks.
To illustrate the previous claim, consider the residual learning process where each residual
block of the network builds towards the sequence of transformations shown in Equation 2.4.

yt+1 = yt + fθ(t, yt) (2.4)

In the equation, t ∈ {0, . . . , T} represents the index of the hidden state y, fθ(t, ·) the t-th
residual block of the network and θ the network parameters [28]. In the limit —if more
residual blocks are added and smaller steps t are taken—the update step from Equation 2.4
goes to a differential equation that is specified by the neural network fθ:

dy

dt
(t) = fθ(t, y(t)) (2.5)

The neural ODE from Equation 2.5 can mimic the behaviour of a residual neural network by
taking an initial point y(0) and applying the neural ODE for a time T to obtain the hidden
state of the network hT that could act as regression output or precede the final classification
layer [27, p. 16].

hT = y(0) +

∫ T

0

fθ(t, y(t)) dt (2.6)

Neural ODEs are more flexible than predefined ODEs due to the possibility to train the
neural network fθ. The neural ODE training is based on the solution to the system of
differential equations. The partially trained network fθ is used in combination with the
initial point to solve the IVP. The gradients for the parameter updates can be calculated
by backpropagating the error of the solution to the IVP with respect to the “ground truth”
solution [13].

2.1.5 Universal differential equations

While the neural ODE presented in Equation 2.5 forms a flexible vector field, it disregards
the domain knowledge regarding the problem at hand. To embed physical knowledge into
the learning process of the neural ODE, Rackauckas et al. propose to combine the neural
network output with a predefined vector field h [17]. The resulting vector field is presented
in Equation 2.7.

dy

dt
(tn+1) = h(t, y(tn)) + fθ(t, y(tn)) (2.7)

In the new neural ODE definition, the network can act as a correction term and is able to
account for the trends within the data that cannot be explained by the theoretical model
alone [27, p. 25]. Even though this approach seems related to physics-informed neural
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networks (PINNs), there is a fundamental difference between the two methods: Neural ODEs
use a neural network to specify the ODE. In contrast, a PINN is used to find a solution to
a predefined ODE under constraints based on domain knowledge.

2.2 Chemical reaction networks

The terms “theoretical vector field” or “vector field based on chemical theory” are frequently
used within this thesis. This section describes the derivation of such vector fields, by giving
the the recipe for constructing a vector field based on a simple CRN.

2.2.1 Species, complexes & reactions

Formally, a CRN is a triple {S, C,R} of species (S), complexes (C) and reactions (R) that
describes the relationships between (chemical) reactions [7]. To define the three sets above,
consider the reaction that describes the oxidation of hydrogen:

2 H2 +O2 → 2 H2O (R1)

In this process, two units of hydrogen (H) combine with a single unit of oxygen (O2) to form
two units of water (H2O). The three different compounds that take part in the reaction are
referred to as the species, S = {H2, O2, H2O} with |S| = ns. The species are preceded
by the non-negative stoichiometry coefficients a (a vector of respectively 2, 1 and 2). In
R1, the species on the left-hand side of the arrow are considered the reactants, whereas the
species on the right-hand side are considered the products. Using these terms, a complex i
can be defined as an additive combination of species and coefficients

∑ns

j=0 aijSj, such that
it corresponds to either the reactants or products of a reaction [7]. Thus, the complexes of
R1 are C = {2 H2 +O2, 2 H2O} with |C| = nc. The graphical representation of the example
CRN that consists out of R = {R1} is shown in Figure 2.1.

H2O

H2

O2

R1

Figure 2.1: The graphical representation of the example CRN that describes the oxidation of
hydrogen.

A model of a CRN can be constructed in both a manual and a data-driven fashion.
The manual construction of networks, which is based on heuristics and chemical theory,
is limited by the size of the networks and thus the effort that is required to formalize the
model. Alternatively, CRNs can be constructed by analyzing the potential energy surface
of the reactions or by using predefined rules, templates and filters [6]. These approaches
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come with drawbacks. As the use of templates limits the ability to discover new reaction
mechanisms in particular, most CRNs that have been formalized using the methods above
are incomplete [6]. This incompleteness can be advantageous for large-scale networks (the
incomplete CRNs can be seen as the pruned versions of the complete networks if merely
irrelevant reactions are left out) [6]. However, the absence of reactions can also lead to
problems when using the CRN for modelling purposes, as explained in the next section.

2.2.2 Dynamical modelling and mass-action kinetics

Using a CRN and the relations between species that it describes, one can build a dynamical
model to determine the concentration of the compounds involved [7, 6]. More specifically, if
the mixture of compounds is well-stirred and the number of compounds is sufficiently high,
one can assume that the probability of the reactions R to occur is distributed according to
an exponential probability distribution [7]. As such, the rate ri of each reaction Ri ∈ R can
be described according to the mass-action kinetics shown in Equation 2.8 [1]:

ri(x) = ki

ns∏
j=1

x
aij
j (2.8)

where ki is the reaction rate coefficient, which can be obtained by experiment or simulation
[6]. xj is the concentration of species j and aij is the stoichiometric coefficient of species j in
reaction Ri [7]. Equation 2.8 can also be interpreted as the propensity function of reaction
Ri [29].

Using the complexes C, one can determine the state change of each reaction. That is, if
a reaction Ri can be described by the complexes Ci → C ′

i, where for R1 it holds that
Ci = 2 H2 + O2 and C ′

i = 2 H2O, the state change can be summarized by ai → a′i.
Here, ai is the vector of the stoichiometry of the complexes grouped by the species, i.e. for
R1, ai = (2, 1, 0) and a′i = (0, 0, 2) [7]. Using the state change, the rate of the change in
concentration that is brought about by Rj is defined as the state change times the rate ri.

dx

dt
= (a′i − ai) · ki

ns∏
j=1

x
aij
j (2.9)

For CRNs with multiple reactions, the rate of change in the total concentration of a species
is provided by the sum over all reactions Ri ∈ R. Thus, returning to R1 a final time, if
the reaction rate is assumed to be k1, then the rate of the change in concentration [·] of the
three species can be described as a set of ODEs (Equation 2.10). In this work, sets of ODEs
that are based on chemical theory will be referred to as hκ. In hκ, the subscript κ refers to
the reaction rates, the parameters of the vector field. As the construction of the system of
ODEs depends on the theoretical model of the CRN, an incomplete theoretical model will
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be translated into an incomplete vector field.

d[O2]

dt
= −k1[O2]

d[H2]

dt
= −2k1[H2]

2

d[H2O]

dt
= 2k1[H2]

2[O2]

(2.10)

Dynamic model calibration The system of ODEs that is used to describe the change
in concentration over time is a function of the reaction rates k. These reaction rates are
unknown and not measurable. Instead, they can be estimated using optimization methods
such as local search and stochastic global optimization metaheuristics [3, 30]. Here, the
model is tasked to minimize the distance between the predictions made with the vector field
and the experimentally measured data.

Open and closed systems The change in concentrations as described in Equation 2.10
is based on the law of conservation of mass. Regardless of the change in concentrations, the
total mass of the species within the system remains constant. The law of the conservation of
mass is based on the assumption that the system is closed: there is no exchange of species
between the system and its surroundings. If there is a flux of mass into or out of the system,
the system is considered open [7]. In the latter case, the vector field based on the law of
mass action is a suboptimal predictor of the concentration of the species over time.

2.2.3 Opportunities for neural ordinary differential equations

The limitations of the dynamical models that have been introduced in the previous section
form an opportunity for neural ODEs. In particular, the neural component of the neural
ODE can be trained to account for the incompleteness of the vector field. Furthermore, the
neural ODE is also expected to pick up any indications towards an open system, which can
be translated to the addition or subtraction of a constant concentration per ∆t. The exact
change in concentration that is added by the neural network can be assessed by calculating
by only applying fθ to the concentrations at each timepoint t. The opportunities for neural
ODEs can be leveraged using other machine learning techniques as well. A summary of the
proposals that are based on a slightly different approach is provided in the next chapter.
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Chapter 3

Related work

The combination of dynamical systems modelling and machine learning has been considered
in previous work. The related work can be divided into three categories, focussing on neural
ODEs, PINNs or sparse identification of nonlinear dynamics (SINDy). In contrast to the
thesis, most work does not actively focus on detecting hidden insights. Rather, it focuses on
accounting for stiff equations and calibrating predefined vector fields.

3.1 Neural ordinary differential equations

The possibility of solving chemical kinetics using neural ODEs has already been explored by
Ji and Deng [15]. Their proposed chemical reaction neural network (CRNN) can be trained
to calibrate the model of a CRN. However, to do so, the number of reactions within the CRN
needs to be known a priori. Using this information, the authors propose an architecture with
a single hidden layer. Because the number of hidden neurons corresponds to the number
of reactions in the CRN, the neural network yields weights and biases that are physically
interpretable as stochiometric coefficients and reaction rates. By linking the neural network
architecture to the theoretical model, CRNN can not account for any dynamics not covered
by the theoretical model [15]. Owoyele and Pal [16] consider a slightly different objective
function and use ChemNODE, a more elaborate type of neural ODE, to solve thermochem-
ical kinetics. ChemNODE is not based on a theoretical vector field, making the model more
flexible when estimating missing dynamics. Instead, the model trains a unique neural net-
work for each species to estimate its thermochemical state. As a result, the output and
architecture of ChemNODE cannot be used directly to analyze the structure of the CRN.
Still, the results found in this work suggest that neural ODEs can fit the stiff dynamics of
chemical kinetics.

3.2 Physics-informed neural networks

Various authors propose to model chemical dynamics using PINNs. However, just like the
neural ODEs, the PINNs are challenged by the stiffness that comes with the chemical kinetics
[19]. Ji et al. [31] account for this stiffness by embedding the theoretical vector field as
soft constraints within the loss function of the PINN [32]. Although this method allows
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for the accurate prediction of the chemical kinetics within stiff systems, the PINNs can not
compensate for any misspecifications within the theoretical vector field due to their inflexible
definition. Podina, Eastman, and Kohandel [33] alleviate the need for a correctly defined
vector field within the PINNs by introducing the universal PINN (UPINN): a combination of
a neural ODE with a PINN loss. Here, the authors also use a UDE to approximate unknown
components of the theoretical vector field. Next, AI Feynman, a physics-inspired method
for symbolic regression, is used to translate the neural network output into a concrete vector
field [34]. While UPINNs outperform UDEs for data with high noise levels or sparsity,
the performance of UPINNs on chemical systems or stiff systems, in general, has not been
investigated [33]. Lastly, the authors state that the estimations of the hidden reactions are
not unique given the trajectory of training data. To contrast the approach used in this thesis
with the work on (U)PINNs, I aim to investigate the opportunities for machine learning in
the context of CRNs in a simpler form. By focussing on just the ODEs, I build upon a basis
that does not embed any assumptions about the dynamics of the chemical reaction into the
loss function, which makes it easier to train the models.

3.3 Sparse identification of nonlinear dynamics

By making use of the information contained in the theoretical model of the CRN, one can
perform regression to create a symbolic expression of an unknown differential equation [35,
36, 27]. This approach has been extended by Hoffmann, Fröhner, and Noé [37] with the
introduction of reactive SINDy, which is used to estimate reaction rate equations from con-
centrational data. In contrast to the majority of models that have been introduced before,
reactive SINDy can account for missing dynamics within the theoretical vector field by
making a new combination of ansatz functions that each represent a single reaction. As a
consequence, reactive SINDy does not make any assumptions about the CRN. On the flip
side, the model does not use all the available domain knowledge, for example by combining
the ansatz functions that are already included in the theoretical model.
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Chapter 4

Methods

The methods of this thesis are twofold. First, I consider the experiments that are performed
using four synthetic datasets. These analyses serve as a proof of concept before applying
the neural ODE to the real-world data collected in [21]. Before describing both datasets, I
introduce the general approach used to model the chemical concentrations over time.

4.1 Chemical reaction networks and neural ODEs

As introduced in the Background, the concentration of chemical species can be modelled by
solving the IVP constrained by a system of ODEs. Recall that, when vector fields based on
CRNs are considered, then h represents the vector field based on the mass-action dynamics
of the CRN and κ the vector of reaction rate coefficients k. To predict the concentration of
the chemical species over time, I solve the IVP. More specifically, if y0 describes the initial
concentrations of the chemical species, then the concentrations over time are described by
a function y that is a solution to the neural ODE and satisfies y(t0) = y0. The system of
ODE that is used in this work is formed by the addition of the theoretical vector field hκ

and the neural network fθ, as shown in Equation 4.1.

dy

dt
(tn+1) = hκ(t, y(tn)) + fθ(t, y(tn)) (4.1)

4.1.1 Neural network architectures

The neural network architectures used in this work are variants on a multilayer perceptron
(MLP) and a long short-term memory (LSTM) network. The number of inputs and outputs
of both architectures is equal to the number of species that are included in the data. The
models are implemented using JAX [38, version 0.4.14] and Equinox [39, version 0.11.1].

Selecting the optimal architecture I test a collection of neural network specifications
to compose the final architectures for the MLP and LSTM. In particular, I optimize the
network architectures for a single problem domain, the synthetic missing dynamics dataset,
using Weights and Biases [40]. I explore the effect of using different network sizes (1, 2,
4 and 8 hidden layers of 16, 32 or 64 neurons), optimizers (Adabelief, stochastic gradient
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descent) and activation functions (ReLU, leaky ReLU, GeLU and sigmoid). I only used the
synthetic missing reactions dataset to tune the architectures and assess their generalizability.
The selected architectures are relatively small: the MLP consists of two hidden layers with a
width of 64 neurons each and the LSTM is formed with a LSTM cell with a 32-dimensional
hidden state followed by a linear layer of 32 neurons. The MLP uses sigmoid activations
while the LSTM uses an identity activation before the application of the linear layer. Both
networks use the identity function as the final activation to leave their output unconstrained.
At each step within the equation-solving process, the neural network is presented with the
measurements at a single time point instead of the complete time series. As the LSTM was
found to outperform the MLP during the experiments with synthetic data, I only use the
LSTM when modelling the experimental data.

Attention layers Within the neural ODE, I apply an attention layer to the temporal
dimension of the data. To do so, the solving procedure should be changed so that the neural
ODE has access to the entire data point of shape (T , ns), where T is the total number of time
points. To prevent the model from looking into the future, this would not be possible in the
real world either, I use a lower-diagonal attention mask, resulting in causal attention. Figure
4.1 provides an example of this mask. The mask has a shape of (T , T ) as self-attention is
considered.

0 T
t

0

T

t

0
1

Figure 4.1: A visualization of the attention mask.

I only apply attention to the LSTM-based neural ODEs as their recurrence leverages the
presentation of multiple time points.

4.1.2 Neural ODE training and inference

Using Equation 4.1 and the initial concentrations of each species, I train fθ during the equa-
tion solve to match the experimental data at the measurement times t (Algorithm 1). In
Algorithm 1, ts refers to the time regulating integration process of the solver. Even though
the solver steps ts are not guaranteed to match t, the predicted concentrations can be saved
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at each time t during the process to make the final prediction. The network parameters θ
are updated with respect to a mean squared error (MSE) loss for the species that have been
measured. The data provided by Harmsel et al. consist of the mean and standard deviation
calculated over two experimental measurements. I generate artificial training, validation and
test data by drawing from a normal distribution that is parameterized with these statistics.
The neural network has been trained on N = 1000 train samples using an Adabelief opti-
mizer with a learning rate of 6 × 10−3 ([41, 38], version 0.1.7). I did not apply dropout as
this was found to cause instabilities during the differential equation solve, resulting in many
rejected solver steps. For the oscillating data I first train the neural ODE on the first 10%
of each time series to prevent getting stuck in a local minimum [13].

I calculate the neural network contribution dyfθ/dt given the prediction of the complete dif-
ferential equation dy/dt, as shown in Equation 4.2. The approach used to calculate the neural
network contribution is presented in Algorithm 2.

dŷfθ

dt
(tn+1) = fθ(tn, ŷ(tn)) (4.2)

Training and inference have been done on the CPU of my computer, which is an Intel Core
i7-10750H CPU @ 2.60 GHz.

Algorithm 1 Neural ODE training

Input
Nepochs: the number of epochs
T : the time of the last measurement
D: the dataset of shape (N,T, ns).
fθ: the neural network with parameters θ
hκ: the theoretical vector field

Output
The trained model fθ

for epoch in Nepochs do
for x,y in D do

ts ← t0
while ts < T do
if ts is t0 then

ŷts ← y0

end if
∆t← ODEsolver(ŷts , ts)
ŷts+∆t ← hκ(ŷts , ∆t) + fθ(ŷts , ∆t)
ts ← ts +∆t

end while
L = MSE (ŷt0:T ,y)
Update θ by taking a gradient descent step on L

end for
end for



CHAPTER 4. METHODS 16

Algorithm 2 Neural network contribution

Input
ŷ: the concentrations predicted by the neural ODE.
fθ: the neural network with parameters θ

Output
cfθ : the neural network contribution

for ŷt in ŷ do
cfθ,t ← fθ(ŷt)

end for

4.2 Experiments with synthetic data

To generate the synthetic datasets, I construct four different chemical reaction networks: The
bottleneck reaction, the (decaying) Brusselator, the open system and the missing reactions
network. The reaction networks differ in the number of species and reactions that are
involved. The reactions are briefly described in the next section. The details regarding the
synthetic data generation, including the individual reactions, vector field specifications and
parameter choices, can be found in Appendix B.

4.2.1 Synthetic dataset design

The bottleneck reaction network, consisting of three reactions (Appendix B.1.1), is chosen
for its simplicity. The small number of interactions between the species makes the inspection
of the neural network contribution relatively simple. As such, the bottleneck reaction is used
to verify whether the neural ODE works as expected.

To test the model performance on a complex network, I selected the Brusselator [42]. The
Brusselator is a well-known example of a network containing oscillating concentrations (Sec-
tion B.1.2, [42]). The stability of the Brusselator is controlled by regulating the concentra-
tions of species X and Y . I model a Brusselator with stable oscillations by setting X = 1
and Y = 3. A Brusselator with decaying oscillations is created by X = 1 and Y = 1.7.
Fitting an oscillating concentration with noisy measurements is challenging as the noise may
prevent the network from learning the oscillating behaviour. As a consequence, I consider it
important to test these chemical reaction networks (CRNs).

The open system (Appendix B.1.3) and missing reactions networks (Appendix B.1.4) are de-
signed to test the capability of the neural ODE of modelling dynamics that are not included
in the theoretical vector field. Both chemical reaction networks are not overly complex. Just
like with the bottleneck reaction, this facilitates the interpretation of the neural network
contribution. Yet, the data produced with the open system reaction network includes an
influx of d[B]

dt
= 0.2 that is not included in the theoretical model. Alternatively, the genera-

tive vector field of the missing reactions network has an additional reaction C → D that is
reflected in the data, but not in the theoretical model. I expect to retrieve the elements that
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are “missing” from the modelled vector field in the contribution of the neural network. It
may be harder to produce an adequate fit on the missing reactions CRN than on the open
system CRN as the former misses a variable, while the latter misses a constant value.

A note on vector fields When actively modelling a discrepancy between the generated
data and the modelled vector field hκ of the neural ODE, which is the case for the open
system and missing reactions CRNs, I use a generative and a modelled vector field. In
particular, the data are always generated by solving the IVP using the generative vector
field. The predefined vector field hκ of the neural ODE is described by the modelled vector
field. If the generative and modelled vector fields are the same, meaning that the neural
ODE has full information regarding the CRN, then I only provide the single, general vector
field.

4.2.2 Modelling noisy measurements

Measurement noise The data are generated with two types of noise to mimic experimen-
tal measurements. To model noisy fluctuations around the measured concentrations I draw
noise from a Gaussian with zero mean and standard deviation σ and a Poisson distribution
with rate λ. Gaussian noise is a common form of noise in natural sciences. A Poisson pro-
cess is commonly used to model shot noise, a common factor in instrumental analysis [43].
The initial concentrations y0 are drawn from a Gaussian distribution with mean µy0 and
standard deviation σy0 . The hyperparameters σ, λ, µy0 and σy0 depend on the vector field
that is considered.

Temporal noise Not all T generated data points are provided to the neural ODE to model
noisy measurement timings. Instead, the data points are sampled in a uniform manner with
a rate Tsample < T .

Reaction rate noise The reaction rates k of each CRN are sampled from a normal dis-
tribution with mean µk and a standard deviation of 0.1. The mean of the reaction rates is
set to µk1 , µk2 = 1.5, 2 for the bottleneck, open system and missing reactions CRNs. For the
Brusselator reactions, all means µki for i ∈ [1, 2, 3, 4] are set to 1.

The data are generated from time tmin until time tmax. The chemical specification, vector
field and modelling parameters are provided for each dataset. A summary of the parameters
used to generate the data can be found in Table B.1. This generative approach results in a
set that has the shape (Ndatapoints, Tsample, ns). An example data point is shown in Figure
4.2, which shows an example time series of the Bottleneck reaction network. Appendix B.2
provides the other datasets and noise types.
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Figure 4.2: An example of synthetic data generated with the Bottleneck reaction network under
Gaussian (a) and Poisson (b) noise. The noisy observations are plotted in orange, while the ground
truth, as described by the chemical dynamics, is shown in blue. The three species involved in the
reaction network are plotted separately.

4.3 Experments with real-world data

For the experimental data, I consider two experimental datasets that have been collected by
[21]. This work proposes a chemical oscillator that is designed using small organic molecules.
The chemical reaction network consists of four reactions and involves 7 species. The reac-
tions include the autocatalytic Fmoc-piperidine (2) deprotection via dibenzofulvene (6); the
N-methylpiperidine (5)-catalysed Fmoc-piperidine (2) deprotection; the fast inhibition via
acetylation by p-nitrophenyl acetate (3); and the slow inhibition by phenyl acetate (4) that
converts piperidine (1) to N-acetyl piperidine [21, p. 7]. this vector field is shown below [21].
The reaction rates [ktr, kac, kinh1, kinh2] are set to [2.02× 10−2, 6.02× 10−1, 2.22× 102, 2.75×
10−3]M−1s−1. sv is the space velocity, which is estimated to be 1 × 10−4. The change
in N -methylpiperidine (5) is not included in the vector field as the concentrations of this
species stay constant over time. The experimental system is open, where a controlled con-
centration of Fmoc-piperidine (2), p-nitrophenyl acetate (3) and phenyl acetate (4) enters
the system. These concentrations, indicated with [·]in, are equal to [0.1, 0.03, 1.8]M−1s−1 for
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both datasets.

d[1]

dt
= ktr[5][2] + kac[1][2]− kinh1[1][3]− kinh2[1][4]− sv[1]

d[2]

dt
= −ktr[5][2]− kac[1][2] + sv ([2]in − 2)

d[3]

dt
= −kinh1[1][3] + sv([3]in − [3])

d[4]

dt
= −kinh2[1][4] + sv([4]in − [4])

d[6]

dt
= ktr[5][2] + kac[1][2]− sv[6]

d[7]

dt
= kinh1[1][3] + kinh2[1][4]− sv[7]

(4.3)

The stepsize dt is governed by the differential equation solver. I use Kværnø’s 5/4 method to
account for the stiffness of the ODE ([20, 13], version 0.4.1). Furthermore, I bin the temporal
measurements into 100 bins and change the temporal scale of the experimental data from
seconds to hours (single-pulse) or days (oscillations) to reduce the total number of steps that
are made by the solver.

The oscillating dataset that has been made available describes the absorbance rates instead
of the concentrations. As the theoretical vector field considers concentrations, the data are
scaled manually to match the order of magnitude described by the theoretical vector field.1

4.4 Modelling open systems

When modelling the experimental data, I assume that the data have been measured in a
closed system. To test the capacity of the neural ODE to model open systems, I change the
original vector field by subtracting 0.02M dibenzofulvene at each period dt. The adapted
definition of the change in dibenzofulvene is shown in Equation 4.4. The constant, artificial
reduction within the theoretical vector field yields a modelling problem that is equivalent to
a constant influx of 0.02M dibenzofulvene in the data.

d[6]

dt
= ktr[5][2] + kac[1][2]− sv[6]− 0.02 (4.4)

4.5 The identification of missing reactions

I use a similar modelling approach for the identification of missing reactions. However,
instead of subtracting a constant concentration for each temporal interval, I remove a part

1The relationship between the absorption, concentration and path length is described by the Beer-Lambert law:
A = εCl. Here, A is the absorbance, ε the extinction coefficient C the concentration and l the length of the light
path. However, as ε and l were unavailable, the data have been shifted and scaled based on a minimization of the
MSE between the data and predicted concentrations.
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of the theoretical vector field. In particular, I modify the change in N-acetyl piperidine to
the definition presented in Equation 4.5. This modification partially removes the pathway of
the second inhibition reaction of the enzymatic oscillator. The rest of the theoretical vector
field remains unaltered.

d[7]

dt
= kinh1[1][3]− sv[7] (4.5)
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Chapter 5

Results

In this chapter, I present the results found with the experiments presented in the Methods.
The results are discussed with the aim of the thesis in mind: I consider both the quality
of the neural ODE fit and the insights provided by the separate neural network contribu-
tion. Furthermore, I will relate the observations made to chemical phenomena, such as the
conservation of mass.

5.1 Synthetic data

As the neural ODEs learn a good fit on nearly all synthetic datasets, I limit myself to
presenting the most interesting results in this section: I highlight unexpected aspects of
the predictions and focus on the cases where the modelling performance breaks down. In
particular, I consider the performance of the MLP and LSTM on the reaction networks under
Poisson noise, as this type of noise turned out to be the most difficult to model. Due to the
good performance of the models on the synthetic data under Gaussian noise, I moved these
results to the appendix to prevent this section from becoming too large. In particular, the
predictions of the neural ODEs on the synthetic data are presented in Appendix B.3, where
the results are grouped based on the modelled measurement noise, which can either come
from a Gaussian (Appendix B.3.1) or Poisson distribution (Appendix B.3.2).

5.1.1 Bottleneck reaction network

The predictions of the MLP (Figure 5.1) and LSTM (Figure 5.2) are shown below. Even
though both models provide a very accurate fit (Subfigures (a)), the neural network contri-
butions of both models differ slightly. For species B and C, the contribution of the MLP is
a lot larger during the initial stages (t < 2.5) of the reaction than the contribution of the
LSTM. Towards the end of the reaction, the contribution of both networks has converged to
0.
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Figure 5.1: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a MLP on the four species within the bottleneck reaction network.
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Figure 5.2: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a LSTM perceptron on the four species within the bottleneck reaction network.
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5.1.2 Brusselator

The fit on the Brusselator, presented in Figures 5.3 and 5.4, is very interesting. The neural
ODE using the MLP is not able to adequately fit the data. The MLP itself outputs a high-
frequency spike train (Figure 5.3b). The fit based on the LSTM is a lot better, but not
perfect. In particular, the neural network underestimates the amplitude of the oscillations
by outputting a contribution that is too small (Figure 5.4b). Notice that the contribution of
the LSTM of species A resembles the concentrations of species B flipped horizontally, and
vice versa. This suggests that the contributions of the neural network are paramount for
predicting the phase of the oscillations. In addition, this coupling indicates that the output
of the neural ODE aims to adhere to the law of mass preservation.
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Figure 5.3: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a MLP on the four species within the Brusselator reaction network.
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Figure 5.4: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a LSTM on the four species within the Brusselator reaction network.
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5.1.3 Decaying Brusselator

The results for the decaying Brusselator are comparable to ones found for the Brusselator:
the MLP-based neural ODE (Figure 5.5) is not able to fit the data, while the LSTM-based
neural ODE (Figure 5.6) underestimates the amplitude of the oscillation. Again, the neural
network contribution of the LSTM for one species resembles the flipped concentration of the
other species, which has to do with the prediction of the correct phase.
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Figure 5.5: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a MLP on the four species within the decaying Brusselator reaction network.
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Figure 5.6: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a LSTM on the four species within the decaying Brusselator reaction network.



CHAPTER 5. RESULTS 25

5.1.4 Open system

For the open system it is interesting to see whether the neural network has found the influx
of d[B]

dt
= 0.2. The presence of Poisson noise slightly worsens the fit for the neural ODE

based on the MLP, as shown in Figure 5.7a. The neural network contributions of the MLP
converge towards 0 for species A. However, for species B the contribution seems towards 0.7.
This overestimation is countered by a negative contribution of species C. The contributions
of the LSTM converge more clearly 0 for species C (Figure 5.8b). However, the network
contribution displays a downward trend for all the species, instead of converging at 0. This
downward trend indicates that, under the influence of Poisson noise, the model has found a
local optimum that does not yield an output of 0 when the reactions are over. Furthermore,
the contributions display a large magnitude at the start of the reaction, which is comparable
to the results found for the bottleneck reaction. The predictions of the LSTM-based neural
ODE are more accurate than the ones from the MLP-based neural ODE.
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Figure 5.7: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a MLP on the four species within the open system reaction network.
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Figure 5.8: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a LSTM on the four species within the open system reaction network.
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5.1.5 Missing reactions

When considering the CRN with missing reactions, it can be seen from Figure 5.9b and
5.10b that the contribution of the neural network is large for the species C and D, which are
involved in the missing reaction C → D. However, both models also seem to compensate
for the missing reaction by increasing the concentration of species B while decreasing the
concentration of species A. The increase of B implicitly leads to an increase of D due to the
presence of the reaction B → D. The artificial increase of B results in a slight deviation in
the model prediction in Figures 5.9a and 5.10a.
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Figure 5.9: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a MLP on the four species within the missing reactions reaction network.
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Figure 5.10: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a LSTM on the four species within the missing reactions reaction network.

5.2 Experimental data

When considering the experimental data, I test the neural ODE performance with three
different variants of hκ. Firstly, I consider the “standard” neural ODE, where hκ is based on
[21]. Figure 5.11 illustrates the results for the single-pulse experiment based on this model.
The experimental measurements (solid blue), neural ODE predictions (dashed red) and pre-
dictions based on hκ (dashdotted green) for the species Fmoc-piperidine (2), dibenzofulvene
(5) piperidine (1) and N-acetyl piperidine (7) are shown in Figure 5.11a. The separate con-
tribution of the neural network fθ at each timepoint t, dfθ/dt, is provided in Figure 5.11b.
Figure 5.11a shows that the neural ODE provides a better fit than hκ. This relative im-
provement can be attributed to the positive neural network contributions for the species
dibenzofulvene (5) and piperidine and N-acetyl piperidine (7), and the negative contribution
for Fmoc-piperidine (2, Figure 5.11b). The neural network contributions change over time.
The rate of their change is the strongest at the start of the reaction and seems to converge
towards the end of the reaction.
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Figure 5.11: The predictive performance of the neural ODE on the single-pulse data. (a), the
experimental measurements (solid blue), predictions from the neural ODE (dashed red) and hκ
(dashdotted green). The four panes illustrate the molar concentrations for the species dibenzoful-
vene, Fmoc-piperidine, piperidine and N-acetyl piperidine. (b), the neural network contribution
for the four measured species.

Figure 5.12 describes the experimental measurements, neural ODE predictions and pre-
dictions based on hκ for the oscillating data. The contributions of the neural network are the
strongest at the start of the reaction and converge to 0 after the initial pulse. The predictions
by the neural ODE and hκ have a comparable amplitude and frequency, but the offsets of the
neural ODE predictions match better with the measurements. The neural ODE prediction
and measurements diverge towards the end of the reaction.
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Figure 5.12: The predictive performance of the neural ODE on the oscillating data. (a), the
experimental measurements (solid blue), predictions from the neural ODE (dashed red) and hκ
(dashdotted green). The four panes illustrate the molar concentrations for the species dibenzoful-
vene, Fmoc-piperidine, piperidine and N-acetyl piperidine. (b), the neural network contribution
for the four measured species.

5.2.1 Open systems

Despite the small differences between the experimental measurements and the predictions
with hκ, I assume that the vector field provided in [21] is complete and that the data have
been collected within a well-mixed, closed system. To test the predictive performance of the
neural ODE on a system that violates the assumptions of the law of mass action, I artificially
model an open system. To do so, I adapt the theoretical vector field by subtracting a fixed
quantity of a species at each timestep dt. This efflux in the vector field is assumed to have
a comparable effect to the influx of the same species within the experimental system. As a
proof of concept, I subtract 20 mM Dibenzofulvene at each dt. The predictions of the neural
ODE that correspond to this experimental paradigm are presented in Figure 5.13. Figure
5.13a demonstrates that the neural ODE is able to account for the misspecification within
the theoretical vector field, while the performance of just hκ has deteriorated significantly.
When comparing the neural network contribution from Figure 5.13 to the contribution in
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Figure 5.11, it can be seen that dfθ/dt as increased with approximately 0.02M. This increase
matches the concentration that has been subtracted from the vector field.
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Figure 5.13: The predictive performance of the neural ODE on the open system. (a), the experimen-
tal measurements (solid blue), predictions from the neural ODE (dashed red) and hκ (dashdotted
green). (b), the neural network contribution.

Figure 5.14 describes the experimental measurements, neural ODE predictions and pre-
dictions based on hκ for the oscillating data on the open system. Again, the neural network
predictions are the largest during the initial phase of the reaction. Both predictions overes-
timate the amplitude of the oscillation. The prediction of the neural ODE forms the best
match with the measurements with respect to the offset of the oscillations.
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Figure 5.14: The predictive performance of the neural ODE on the oscillating data. (a), the
experimental measurements (solid blue), predictions from the neural ODE (dashed red) and hκ
(dashdotted green). The four panes illustrate the molar concentrations for the species dibenzoful-
vene, Fmoc-piperidine, piperidine and N-acetyl piperidine. (b), the neural network contribution
for the four measured species.

5.2.2 Missing reactions

In this section, I assess the resilience of the neural ODE against incomplete vector fields,
where the CRN contains more reactions than presumed in theory. To this end, I remove
the slow inhibition pathway via phenyl acetate (4), which negatively affects the creation of
N-acetyl piperidine (6). This modification differs from the creation of an open system as
I am omitting a variable instead of subtracting a constant value. The results are shown
in Figure 5.15. Even though the neural ODE fit is not perfect (Figure 5.15a), the missing
variable is largely accounted for by an increase in the neural network contribution in Figure
5.15b compared to Figure 5.11b.
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Figure 5.15: The predictive performance of the neural ODE with a missing reaction. (a), the
experimental measurements (solid blue), predictions from the neural ODE (dashed red) and hκ
(dashdotted green). (b), the neural network contribution.

The neural ODE predictions made on the oscillating CRN have a lower quality than the
single-pulse predictions. Figure 5.16a shows that the prediction for N-acetyl piperidine does
not capture the oscillating behaviour displayed by the measurements. The neural network
contribution, presented in Figure Figure 5.16b, does display oscillating behaviour. However,
the contribution is too small to counter the misspecified theoretical part of the neural ODE.
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Figure 5.16: The predictive performance of the neural ODE with a missing reaction. (a), the
experimental measurements (solid blue), predictions from the neural ODE (dashed red) and hκ
(dashdotted green). (b), the neural network contribution.

5.3 Attention weights

To demonstrate the applicability of the attention layer within the LSTM, I apply an attention
layer to the synthetic decaying Brusselator CRN. Figure 5.17 visualizes the attention weights.
The attention weights resemble the oscillations of the Brusselator, for the magnitude of the
weights also oscillates, converging towards the average of 0.003375. The effect of the attention
weights depends on what species is considered, as the oscillations of the two species are each
other’s conjugates. If the large weights co-occur with the peaks of the oscillations, the
influence of these time points is amplified. In contrast, if the large weights correspond to
the valleys while the small weights match the peaks, the values at each timepoint contribute
equally to the attention. As a consequence, the attention layer allows the model to focus
on specific time points for particular species. This property can be beneficial when many
species are involved in the CRN that do not play an equally important role in the reactions
of interest.
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Figure 5.17: The training attention weights of the neural ODE using a LSTM network with temporal
attention.
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Chapter 6

Discussion

The results presented in the previous chapter show that a neural ODE can learn a good
representation for most of the datasets considered. The quality of the predictions depends
on the network architecture chosen as fθ. In particular, the results of the synthetic data
experiments indicate that the MLP does not perform well when the data are modelled
with shot (Poisson) noise. The neural ODE based on the LSTM could fit all datasets but
the experimentally measured oscillations combined with an incomplete vector field. In this
section, I discuss the possible causes of the observations listed above. In addition, I present
the limitations of this work.

6.1 A comparison of neural network architectures

Before diving into the specifics of both neural network architectures, I consider the differences
between the noise distributions used. I focus on the Brusselator network, as the difference
in performance between the MLP and LSTM was the clearest for this CRN. The noise that
is modelled according to a Gaussian distribution Figure 4.2a is a lot smaller than the noise
that is modelled with the Poisson distribution Figure 4.2b. As a consequence, there may be
two reasons that explain the difference in performance. First, I suspect that the difference
between the model performances could be caused by overfitting. This would be in accordance
with the sizes of the two networks, where the MLP with two hidden layers of 64 neurons is
more complex than the LSTM with a hidden state and fully connected layer with a width of
32. The memory component of the LSTM is not likely to make a large difference between the
models, as the models are applied to a single timepoint per solver step. Second, the models
might have gotten stuck in a local optimum during training. The difference in performance
is then rooted in the architectural differences between the MLP and the LSTM cell. In
particular, the gated structure of the LSTM may have been beneficial during training.

6.2 Modelling oscillating data with missing reactions

The predictions on the oscillating experimental measurements made with a neural ODE with
an incomplete vector field (Figure 5.16) were the only results that did not fit the test data.
In contrast, the neural ODE was able to account for the missing reactions when the single-
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pulse data is considered (Figure 5.15). Naturally, it is not guaranteed that the predictions
presented in Figure 5.15 are made by a model that has reached the global optimum. This
observation has been made in [33] as well. Still, the predictions based on a local optimum
seem adequate, as the single pulse data is not overly complex. The oscillating data, however,
comes from a more complex distribution. According to Harmsel et al. [21], it is not trivial to
design a synthetic chemical oscillator. This assumption of complexity may hold as well for
recreating such a vector field based on experimental measurements. In other words, it can
be difficult to find the exact correction to the vector field that induces oscillating behaviour.
As such, I hypothesize that, for the oscillating data, the local optima are a lot further from
the global optimum than for the single-pulse data. As such, when the model converges to
a local optimum, the predictions are fairly bad compared to the single-pulse variant. This
problem can possibly be solved by experimenting with various schedulers and optimizers.

6.3 Limitations

A limitation of the method is that the neural network contribution is hard to interpret. The
contribution represents a combination of all inconsistencies found between the data and the
predictions by hκ. As a consequence, it can be challenging to reason about, or train an
algorithm on, the neural network contributions. In addition, there is not always a unique
solution that provides an adequate fit. This is also highlighted by the comparison of the
results found by the MLP and LSTM for the synthetic data (Section 5.1). As a consequence,
it is even harder to reason about the contributions of the neural network.
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Chapter 7

Conclusion

The behaviour of chemical species during a reaction is highly dynamic and can be modelled
with a system of differential equations. The quality of this system is affected by the theoreti-
cal descriptions of the CRN, which can be incomplete. To account for the differences between
the experimental data and the theoretical model, I combine dynamical systems modelling
and deep learning in the form of neural ODEs. I test the modelling performance of the neu-
ral ODEs with standard CRNs, artificially introduced open systems and incomplete vector
fields.

The results found underline the predictive qualities of LSTM-based neural ODEs: the mod-
els provide an excellent fit for almost all single-pulse and oscillating concentrations under
the noisy conditions as presented above. In addition, the separate LSTM output sheds light
on the magnitude, species concerned and temporal signature of the discrepancies between
the theoretical model and the data. These insights can be translated into concrete changes
to the theoretical model with the application of symbolic regression [22, 34]. As such, the
neural network output can ultimately be used to reason about the structure of the CRN.
Yet, it can be hard to interpret the contributions made by the neural network as its output
aggregates all noise sources within the data.

In future work, this research can be extended by using neural ODEs to calibrate the theo-
retical vector field. For example, by changing the interaction between the neural network
and the theoretical vector field, the network can be trained to learn the reaction rates while
compensating for theoretical shortcomings.
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Reflection

This is it: the process of writing my thesis has almost ended and I may present and defend
my work this coming Friday. During one of our meetings, Tal compared the defence to a
victory lap. Granted, I am nervous. Nonetheless, I am extremely excited to see what every-
one thinks about the work Tal and I have done together.

Paradoxically, everything described in this document started about a year ago with a discus-
sion on quantum machine learning. I was looking for a topic for my thesis in data science back
at that time and I approached Tal for a discussion on his main research interests. Because I
had no background in physics whatsoever, we quickly agreed this was not the best topic for
me. Fortunately, Tal combined his broad interests with a great judgement of character and
suggested this topic to me. The field of application, chemical reaction networks, immediately
sparked my interest. Yet, I was unfamiliar with neural ordinary differential equations, or
to quote Dr Patrick Kidger’s amazing PhD thesis [13, p. 16]: “What is a neural differential
equation anyway?”

Well, I have had plenty of opportunities to figure that out. I am elated with the experience
I have gained while working on this thesis. I learned about differential equations, solvers,
stiff equations and chemical dynamics. In addition, I have learned to work with the Jax
family, which is a great addition to my experience with deep learning libraries. Tal’s invita-
tion to think critically about machine learning practices highlighted the similarities between
machine learning and natural sciences (including physics, with his help of course). I deeply
appreciate these implicit connections between different fields and I hope to unravel and un-
derstand more of these myself in the future as well. Next to the project itself, I learned more
about the bigger picture of doing research as well. Doing research is not just about coding
and writing, it also includes discussing, presenting and most important of all, being curious
and having fun.

Bad reflections Was the whole project as idyllic as described above? By all means, no!
Though, that’s not a problem at all. In fact, by making mistakes I’ve created quite a bit of
wisdom. I still have a lot to learn regarding communication and asking for help in particular.
Truth be told, I enjoy programming challenges, and don’t mind “being stuck” on a piece of
code for a few hours.1 It typically invites me to use different strategies than I have used

1That is, if there’s no deadline very close by.
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before, which is a great learning experience. However, I should also learn to learn from
someone else’s expertise. If there’s one thing that I’ve learned, then it is that I have to write
everything down. Or, in more academic terms, document everything. I have the tendency to
clean notes, code or documentation only once in a while. It’s way better to keep everything
up to date and pushed to git. The latter also provides some peace of mind when your
backpack is totally soaked by the Dutch downpour, and your laptop is still inside... I think
that it would help if I split the main project into smaller subprojects of about a week. Then,
at the end of the week, I can spend some time writing everything down in a structured way,
which makes all the work more easily retrievable.

26-05-2024
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Appendix A

Supplementary figures

This chapter presents all results that have been found when considering the experimental
data, summarizing the standard fit, open system and missing reaction experiments with the
single-pulse (Appendix A.1) and oscillating data (Appendix A.2). The chapter serves as a
reference without providing an in-depth description of all figures. Instead, all conclusions
drawn from these results are provided in the main document.

A.1 Single-pulse experiment

A.1.1 Standard fit
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Figure A.1: The predictive performance of the neural ODE on the single-pulse data. (a), the
experimental measurements, predictions (solid blue) from the neural ODE (dashed red) and hκ
(dashdotted green). The four panes illustrate the molar concentrations for the species dibenzoful-
vene, Fmoc-piperidine, piperidine and N-acetyl piperidine. (b), the neural network contribution
for the four measured species.
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A.1.2 Open system
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Figure A.2: The predictive performance of the neural ODE on the single-pulse data in the open
system. (a), the experimental measurements, predictions (solid blue) from the neural ODE (dashed
red) and hκ (dashdotted green). The four panes illustrate the molar concentrations for the species
dibenzofulvene, Fmoc-piperidine, piperidine and N-acetyl piperidine. (b), the neural network con-
tribution for the four measured species.
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A.1.3 Missing reactions
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Figure A.3: The predictive performance of the neural ODE with an incomplete vector field on the
single-pulse data in the open system. (a), the experimental measurements, predictions (solid blue)
from the neural ODE (dashed red) and hκ (dashdotted green). The four panes illustrate the molar
concentrations for the species dibenzofulvene, Fmoc-piperidine, piperidine and N-acetyl piperidine.
(b), the neural network contribution for the four measured species.
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A.2 Sustained oscillations

A.2.1 Standard fit
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Figure A.4: The predictive performance of the neural ODE on the oscillating data. (a), the
experimental measurements, predictions (solid blue) from the neural ODE (dashed red) and hκ
(dashdotted green). The three panes illustrate the molar concentrations for the species Fmoc-
piperidine, dibenzofulvene and N-acetyl piperidine. (b), the neural network contribution for the
four measured species.
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A.2.2 Open system
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Figure A.5: The predictive performance of the neural ODE on the oscillating data in the open
system. (a), the experimental measurements, predictions (solid blue) from the neural ODE (dashed
red) and hκ (dashdotted green). The three panes illustrate the molar concentrations for the species
Fmoc-piperidine, dibenzofulvene and N-acetyl piperidine. (b), the neural network contribution for
the four measured species.
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A.2.3 Missing reactions
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Figure A.6: The predictive performance of the neural ODE on the oscillating data of the missing
reactions dataset. (a), the experimental measurements, predictions (solid blue) from the neural
ODE (dashed red) and hκ (dashdotted green). The three panes illustrate the molar concentrations
for the species Fmoc-piperidine, dibenzofulvene and N-acetyl piperidine. (b), the neural network
contribution for the four measured species.
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Appendix B

Experiments with synthetic data

The neural ODE has been trained on synthetic data to assess the performance of the model in
a controlled setting. The performance has been tested on the four chemical reaction networks
that are described below. For some chemical reaction networks, we use a “generative” and
a “modelled” vector field to actively model a discrepancy between the generated data and
the modelled vector field hκ of the neural ODE. The datasets are generated with Gaussian
and Poisson noise around the measurements. Furthermore, not all generated data points
are provided to the neural ODE to model noisy measurement timings. The parameters that
regulate the noise are described in Appendix B.1. A visualization of the noisy training data
is provided in Appendix B.2. The modelling performance of the neural ODE is shown in
Appendix B.3.

B.1 Chemical reaction networks

This section lists the parameters used to generate the synthetic datasets. For each dataset,
the chemical specification, vector field and modelling parameters are provided. A description
of the parameters can be found in Table B.1.

Abbreviation Description

tmin, tmax The first and last recorded time point.
T The total number of recorded time points.

Tsample The fraction of time points in the training data.
σ The standard deviation of the Gaussian distribution used to mimic noisy observations.
λ The rate of the Poisson distribution used to mimic noisy observations.
µy0 The mean of the Gaussian distribution used to sample the initial concentrations.
σy0 The standard deviation of the Gaussian distribution used to sample the initial concentrations.
µk The mean of the Gaussian distribution used to sample the reaction rates k.

Table B.1: The description of the parameters used to generate the synthetic datasets.
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B.1.1 Bottleneck reaction network

The bottleneck reaction network consists of three species and is described below. The pa-
rameters that are used to generate the data are presented in Table B.2.

Specification.

A
k1−→ B (R1)

B
k2−→ C (R2)

Vector field.

d[A]

dt
= −k1[A]

d[B]

dt
= k1[A]− k2[B]

d[C]

dt
= k2[B]

Parameters.

tmin tmax T Tsample σ λ σy0
1 10 100 0.7 0.1 1 0.1

Table B.2: The parameters used to generate the data that correspond to the bottleneck reaction
network.

B.1.2 Brusselator

The Brusselator consists of 5 species and is described below [42]. The vector field only
describes species A and B, as species X and Y are provided in excess, making their concen-
trations constant. For stable oscillations X = 1 and Y = 3. A Brusselator with decaying
oscillations is created by X = 1 and Y = 1.7. The parameters that are used to generate the
data are presented in Table B.3.
Specification.

X
k1−→ A (R1)

2A+B
k2−→ 3A (R2)

Y + A
k3−→ B +D (R3)

A
k4−→ E (R4)

Vector field.

d[A]

dt
= k1[X] + k2[A]

2[B]− k3[Y ][A]

d[B]

dt
= −k2[A]2[B] + k3[Y ][A]

Parameters.

tmin tmax T Tsample σ λ σy0
1 30 300 0.7 0.01 0.1 0.01

Table B.3: The parameters used to generate the data that correspond to the Brusselator reaction
network.
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B.1.3 Open system

The open system consists of three species and is described below. The reaction network
includes an influx of 0.2B per dt, which is not known to the model. This is reflected in the
difference between the generative and the modelled vector field. The parameters that are
used to generate the data are presented in Table B.4.

Specification.

A
k1−→ B (R1)

∅ 0.2−→ B (R2)

B
k2−→ C (R3)

Generative vector field.

d[A]

dt
= −k1[A]

d[B]

dt
= k1[A]− k2[B] + 0.2

d[C]

dt
= k2[B]

Modelled vector field.

d[A]

dt
= −k1[A]

d[B]

dt
= k1[A]− k2[B]

d[C]

dt
= k2[B]

Parameters.

tmin tmax T Tsample σ λ σy0
1 10 100 0.7 0.1 1 0.1

Table B.4: The parameters used to generate the data that correspond to the open system reaction
network.

B.1.4 Missing reactions

The missing reactions network consists of four species and is described below. The reaction
C → D is not known to the model. This is reflected in the difference between the generative
and the modelled vector field. The parameters that are used to generate the data are
presented in Table B.5.

Specification.

A
k1−→ B + C (R1)

B
k2−→ D (R2)

C
k3−→ D (R3)

Generative vector field.

d[A]

dt
= −k1[A]

d[B]

dt
= k1[A]− k2[B]

d[C]

dt
= k1[A]− k3[C]

d[D]

dt
= k2[B] + k3[C]

Modelled vector field.

d[A]

dt
= −k1[A]

d[B]

dt
= k1[A]− k2[B]

d[C]

dt
= k1[A]

d[D]

dt
= k2[B]
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Parameters.

tmin tmax T Tsample σ λ σy0
1 10 100 0.7 0.1 1 0.1

Table B.5: The parameters used to generate the data that correspond to the missing reactions
reaction network.
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B.2 Visualization of the synthetic training data

This section provides examples of the synthetic training data generated with the vector fields
from the previous chapter. The data are polluted with Gaussian (subplots (a)) and Poisson
(subplots (b)) noise. The noisy data points are plotted in orange, while the noiseless ground
truth is shown in blue.

B.2.1 Bottleneck reaction network

2.5 5.0 7.5 10.0
0.0

2.5

5.0

7.5
Species A

2.5 5.0 7.5 10.0

0

2

Species B

2.5 5.0 7.5 10.0
0.0
2.5
5.0
7.5

Species C

Time [A.U.]

Co
nc

en
tra

tio
n 

[A
.U

.]

Observation
Ground truth

(a)

2.5 5.0 7.5 10.0

0

5

10
Species A

2.5 5.0 7.5 10.0
2

0

2

4
Species B

2.5 5.0 7.5 10.0

0

5

10
Species C

Time [A.U.]

Co
nc

en
tra

tio
n 

[A
.U

.]

Observation
Ground truth

(b)

Figure B.1: The modelled ground truth (blue) and the noisy observations (orange) generated with
the bottleneck reaction network. The observations represent a single data point. The measurement
noise has been generated using (a) a Gaussian distribution with σ = 0.1 and (b) a Poisson distri-
bution with λ = 1. The sampling rate is Tsample = 0.7.
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B.2.2 Brusselator
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Figure B.2: The modelled ground truth (blue) and the noisy observations (orange) generated with
the Brusselator reaction network. The observations represent a single data point. The measurement
noise has been generated using (a) a Gaussian distribution with σ = 0.01 and (b) a Poisson
distribution with λ = 0.1. The sampling rate is Tsample = 0.7.
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B.2.3 Decaying Brusselator
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Figure B.3: The modelled ground truth (blue) and the noisy observations (orange) generated with
the decaying Brusselator reaction network. The observations represent a single data point. The
measurement noise has been generated using (a) a Gaussian distribution with σ = 0.01 and (b) a
Poisson distribution with λ = 0.1. The sampling rate is Tsample = 0.7.

B.2.4 Open system
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Figure B.4: The modelled ground truth (blue) and the noisy observations (orange) generated
with the open system reaction network. The observations represent a single data point. The
measurement noise has been generated using (a) a Gaussian distribution with σ = 0.1 and (b) a
Poisson distribution with λ = 1. The sampling rate is Tsample = 0.7.
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B.2.5 Missing reactions
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Figure B.5: The modelled ground truth (blue) and the noisy observations (orange) generated
with the missing reactions reaction network. The observations represent a single data point. The
measurement noise has been generated using (a) a Gaussian distribution with σ = 0.1 and (b) a
Poisson distribution with λ = 1. The sampling rate is Tsample = 0.7.



APPENDIX B. EXPERIMENTS WITH SYNTHETIC DATA 58

B.3 Neural ODE modelling performance

In this section, the modelling performances of the different neural ODEs are presented. The
results are grouped based on the modelled measurement noise, which can either come from
a Gaussian (Section B.3.1) or Poisson distribution (Section B.3.2). We test the performance
of a neural ODE that is based on a multilayer perceptron (MLP) and a neural ODE that
is based on a long short-term memory (LSTM) network. While the neural ODE with the
MLP vector field is able to model the synthetic data under Gaussian noise, Appendix B.3.2
shows that the performance deteriorates under Poisson noise for the Brusselator CRNs. The
neural ODE with the LSTM provides a better fit in these cases.

B.3.1 Gaussian noise

2.5 5.0 7.5 10.0
0

5

10
Species A

2.5 5.0 7.5 10.0
0

1

2

3
Species B

2.5 5.0 7.5 10.0
0

5

10
Species C

Time [A.U.]

Co
nc

en
tra

tio
n 

[A
.U

.]

Ground truth
Prediction

(a)

5 10
0.6

0.4

0.2

0.0
Species A

5 10
0.0

0.5

1.0

Species B

5 10

1

0

Species C

Time [A.U.]

df
dt

(b)

Figure B.6: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a multilayer perceptron on the four species within the bottleneck reaction network.
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Figure B.7: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a LSTM on the four species within the bottleneck reaction network.
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Figure B.8: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a multilayer perceptron on the four species within the Brusselator reaction network.
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Figure B.9: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a LSTM on the four species within the Brusselator reaction network.
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Figure B.10: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a multilayer perceptron on the four species within the decaying Brusselator reaction
network.
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Figure B.11: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a LSTM on the four species within the decaying Brusselator reaction network.
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Open system
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Figure B.12: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a multilayer perceptron on the four species within the open system reaction network.
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Figure B.13: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a LSTM on the four species within the open system reaction network.
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Missing reactions

0

5

10
Species A

0

1

2

3

Species B

2.5 5.0 7.5 10.0
0

2

4
Species C

2.5 5.0 7.5 10.0
0

10

20
Species D

Time [A.U.]

Co
nc

en
tra

tio
n 

[A
.U

.]

Ground truth
Prediction

(a)

1.0

0.5

0.0
Species A

0

1

2

3
Species B

2.5 5.0 7.5 10.0
4

2

0
Species C

2.5 5.0 7.5 10.0

1

2

3
Species D

Time [A.U.]

df
dt

(b)

Figure B.14: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a multilayer perceptron on the four species within the missing reactions reaction network.
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Figure B.15: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a LSTM on the four species within the missing reactions reaction network.
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B.3.2 Poisson noise
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Figure B.16: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a multilayer perceptron on the four species within the bottleneck reaction network.
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Figure B.17: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a LSTM perceptron on the four species within the bottleneck reaction network.
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Figure B.18: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a multilayer perceptron on the four species within the Brusselator reaction network.
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Figure B.19: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a LSTM on the four species within the Brusselator reaction network.
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Figure B.20: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a multilayer perceptron on the four species within the decaying Brusselator reaction
network.
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Figure B.21: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a LSTM on the four species within the decaying Brusselator reaction network.
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Figure B.22: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a multilayer perceptron on the four species within the open system reaction network.
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Figure B.23: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a LSTM on the four species within the open system reaction network.
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Figure B.24: The modelling performance (a) and neural network contribution (b) of the neural ODE
using a multilayer perceptron on the four species within the missing reactions reaction network.
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Figure B.25: The modelling performance (a) and neural network contribution (b) of the neural
ODE using a LSTM on the four species within the missing reactions reaction network.
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